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1 Introduction

We have been studying the production of baryonic states using deuterium as a neutron
target. When the final state contains a missing neutral (e.g. a neutron), missing-mass
techniques are limited by the Fermi motion of the target neutron. In this note we
investigate methods to minimize the effects of this smearing, i.e. ways to improve
the resolution of measured quantities by appropriate analysis techniques. We use
the production of the A*(1520) off the proton in deuterium to test various correction
schemes:

vp — KTA*(1520) (1)
— K™p

This reaction has the same kinematics as reactions on the neutron, but can be com-
pletely overdetermined by measuring all particles in the final state. We assume that
procedures which are successful in the reconstruction of this reaction, while ignoring
the possibly known momentum of the proton, can be used for the reconstruction of
other reactions with an undetected neutron.

We first introduce some notation for the sum of the beam and target four vectors:

P = py+pr (2)
MK = (P_pK+)2 (3)
My = (P—pks—px-)? (4)

The goal of this study is to consider the resolution of the measurement of M3 when
the proton is undetected. In this case, the Fermi momentum in the target limits the
measurement, of this quantity using the missing-mass technique as shown in Fig. 1,
and no peak is visible in the spectrum. We investigate how to determine the quantity
M3(0) in the absence of Fermi smearing by using constraints between measured quan-
tities in the reaction. In this note we compare three different methods for improving
the resolution.



2 Data sample

The data sample includes skimmed files from the entire g2 photon run period. The
skimming process was accomplished in two steps. The first skim was part of the
standard cooking for the g2 data and selected all events with positive tracks in the
final state with a part-bank mass between 0.3 and 0.7 GeV. The data set was further
reduced in a second step that required a negative track in every event. When this
second skim was produced, “bad” files were eliminated and files from one run were
consolidated into a single file. The resulting data sample consists of 231 files on the
g2 cache disk and correspond to runs between 20020 and 20698. Runs 20020-20352
were taken at an electron beam energy of 2.478 GeV and runs 200584-20698 were
taken with an electron beam energy of 3.115 GeV [1]. In order to enhance the photon
flux at higher energy, the runs were triggered with limited ranges of T-counters. The
skimmed data set, which requires two kaons, also has a selection bias for the higher
energy photons.

3 Empirical Corrections

The SPring-8 collaboration has adopted an empirical approach to corrections to the
reconstructed missing mass, which have been shown to work for the case of ¥* pro-
duction [2]. Their corrected missing mass is given by:

My — f(My —my), (5)
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M (0)

where the correction parameter f is equal to 1, and my is the nucleon mass. The
motivation for such approach is described in an informal note by Ken Hicks [3], where
he determines that the factor f = 0.8 is a better value for the CLAS g2 data set which
we use subsequently in this analysis. We take Eq.5 as the defining equation for the
missing mass correction and investigate various ways of determining f, which might
vary depending of the kinematics of the event.

4 Nucleon mass as a constraint

When a particle is missing, a powerful constraint results by using the known mass of
the assumed missing particle. For example, if the reaction is assumed to take place
on a proton (or neutron) and this is the undetected particle, then the missing four-
momenta can be reconstructed using the measured missing momenta and the known
nucleon mass:

—

ﬁmiss = P_ﬁK+_ﬁK7 (6)
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Pmiss — (Eaﬁmiss) (7)
E = \/ﬁmiss2+m?\7 (8)

The substitution of E in Eq. 8 for the energy of the “missing” proton in Eq. 1 can result
in considerable improvement in the reconstruction of the kinematics of the event.
This is especially true in the case where the energies are dominated by the masses
of particles and uncertainties in the determination of the missing three-momenta
contribute relatively little to reconstructed missing mass. The four-vector of the
missing particle determined in this way can then be used to construct “invariant
mass” quantities, such as that of the A*(1520):

MA(O) =~ \/(pmiss+pK—)2

MA - \/(pmiss + pKf)2

f - MN+mN. (9)

5 Kinematical corrections

Using standard notation for many variables, we can compute the kinematical variables
of interest assuming that the target proton in Deuterium has Fermi momentum ppg
which is small relative to its mass M.

2
Pr o
= (My+— . 10
pr ( T 2MT7pF) ( )

Each kinematic variable is considered a function of the Fermi momentum and reduces
to the case of scattering off a stationary target when pp is zero.

s = P? (11)

s = 2E, (MT + 21]9\2;T — DPF COS 9p> + M7 (12)

s(py = 0) = 2E,Mp+ M} (13)
s—s0) = B2 a5 (14)

My

The mass of the A*(1520), in “missing mass,” can be computed using momentum and
energy conservation

My = (P—pks) (15)

Py

2Mrp

M; = s5—2Ek, (E7 + Mrp + > + 2B, p5c, + 2Pr - Pr+ + My (16)
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M;(0) = s(0)—2Egy (B, + Mr) + 2E,pi, + My (17)
2
p — — —
My = Mi(0) + (Ey — Ex+) MFT + 2Pk - (Prt — Py) (18)
M; =~ MZR(0) + 2pp - (Pry — DY) (19)
= MR(0) + 2| - [Frcr — By - cos O (20)

In the last step we have neglected the quadratic term in pr compared to the linear
term. In a similar way one can compute the mass of the missing nucleon using

My = (P—pry—pr-)’ = (P —pkx)’ (21)
M]2V = s—2Fkk (E',y + My + 2]]9\2;T> + 2B\ D%k + 2PF - Dk + MIQ(K (22)
My (0) = 5(0) — 2Ekx (B, + Mr) + 2B, i + My (23)
My = M(0) + (B, — Exk) % + 2pF - (Prx — Py) (24)
MY =~ M(0) +2[pr| - |[Prt — Dy - cos Oxx—y (25)

We have used the abbreviated notation of “KK” for the sum of positive and nega-
tive kaon momenta and energies. In the absence of Fermi smearing, My (0) should
equal the nucleon mass my = 0.94 GeV. Combining Eq. 25 and Eq. 20 we obtain the
following relation:

M]2V — m?\, |ﬁKK — ﬁ7| COS 9[([(,7
With the approximation that

We obtain the following equation:

MA(O) ~ MA

_ |ﬁ[(+—]77| (COSQK+_7> (MN—i-mN

My — . 28
|ﬁKK — ]5»7| COS 9[([(_7 2MA > ( N mN) ( )

Unfortunately, we do not have enough information to determine both pr and the
relative angles. However, the ratio of the cosine of the angles relative to the Fermi
momentum vector should be close to unity if the angle between the two vectors is
small. In addition, due to the random nature of the Fermi motion, we can expect that
the ratio will be unity on average as well. In the limit in which the photon momentum



is large compared to the kaon momenta, this will be a good approximation. Making

the assumption that
cosOgy—\ ] (29)
cosOkr—)

then we obtain the following formula for a correction for the Fermi momentum

MA(O) ~ MA_ |2_)‘K+_21’7|
\PxK — Dy

<MN+mN

) (My =) (30)

We see that this scheme is very similar to Eq. 5 where the constant factor f = 0.8 is
replaced by an expression which depends on kinematics. To estimate the reliability
of this approximation, we can employ the tracks in our event sample and determine
their angles relative to a randomly generated Fermi momentum vector. These dis-
tributions are shown in Fig.2. The top figures in the figure correspond to cos 0,
and cos Ok i _- relative to an isotropicily generated Fermi momentum vector for each
event. The ratio in Eq. 29 is plotted in the bottom figures for the case of K* and K~
production which correspond to scattering off proton and neutron targets. Differences
indicate small kinematic differences for each case. The correction factor in Eq. 30 is
plotted in Fig. 3 for the cases of KT and K~.

6 Kinematically complete events

For events where the K™, K~ and the proton are all detected, the mass of the A*(1520)
can be determined directly from the invariant mass of the proton and the K~. This
determination is not affected by the Fermi momentum in the target, so can be used
to determine the “correct” value of the correction factor f !:

My(0) ~ (pp + pr-)?

f - MA_ (pp‘i_pKf)2 (31)
N MN+mN.

For this sample of events, this value can be used to check the accuracy of the other
approximations.

7 Discussion

The empirical correction scheme in Eq.5 is seen to work in calibration reactions, so
the kinematical corrections of Eq. 30 must be close to the value of 0.8 if they are to

!The proton energy has not been corrected for energy loss, so improved resolution may be possible



provide useful corrections to the data. For the g2 data set, the correction factor in
Eq. 30 is plotted in Fig. 3, top left for the K* missing mass and top right for the K~
missing mass cases. For the case of the K missing mass, which is to be compared
to the empirical correction above, we see that the average correction factor is 0.82
compared to 0.8. We note that the distribution for the correction to the K~ missing
mass is actually slightly broader and has an average value of 0.96. This is due to
the differences in kinematics between Kt and K~ in our data sample. In the bottom
of the figure we plot the correction factors determined using Eq.9 and Eq.31. The
correction factor as determined from the kinematically complete events is broader
than the other estimates, but peaks in approximately the same place with an average
value of 1. The differences of the correction factors relative to this one are shown
in Fig.4. The corrections using the nucleon mass as a constraint (Eq.30) has the
smallest rms, indicating a slight preference for this method (rms=0.72 compared to
0.75 for the other two methods).

In Fig.5 we show the corrected massing mass distributions using the three cor-
rection methods developed here. Also indicated are the number of fitted A*’s from
each of the corrected distribution. Eqs. 30 and 9 determine the number of A*’s to be
approximately 100, compared to the number obtained from Eq.5 which gives a value
of 88. The numbers are in fact consistent within the errors of the fit. However, the
larger number of fitted A*’s probably indicates that the resolution function is slightly
better for the kinematic corrections compared to the constant correction of Eq.5. A
direct comparisons of the distributions is shown as an overlay in Fig. 6.

8 Conclusion

All three corrections considered here improve the missing mass resolution of reaction
1. There are slight indications that Eq.9 is the best procedure based on the com-
parison with the correction factor determined from kinematically complete events.
In addition, this procedure is recommended mainly because it simply constrains the
mass of the missing particle to have the nucleon mass, and is therefore the easiest to
understand.
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Figure 1: The missing mass corresponding to the A*(1520) computed for the reac-
tion yp — KX assuming the target proton is at rest. No peak is visible in this
uncorrected spectrum.
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Figure 2: Distribution of the cosine ratios in Eq.29 are estimated from the data
assuming that the angle of the Fermi momentum is isotropic. The Fermi direction
is generated randomly and then the angle is computed between the measured kaon
vectors and this randomly generated vector (Top figures). The bottom figures are
the distributions for the ratio in Eq. 29 for the case of scattering off the proton (left)
and for the case of scattering off the neutron (right). The approximation in Eq.30

assumes that these ratios are unity.



[ ID 89
600 — Mo 02020
[ RMS 0.1726
: UDFLW 0.000
500 ohan o
400 —
300
200 |
100 —
0 :\ [ ‘ | | ‘ [ | ‘ L1 ‘ ||
0 1 2 3 4 5
Correction Factor K+
200 i IEDnmS 522
- Mean 0.8833
75 E G
C OVFLW 2.000
150 C ALLCHAN 589.0
125 |
100 £
75
50
5
0 E L1 ‘ | lJ | | ‘ | | ‘ | |
0 1 2 3 4 5

IM Correction Factor K+

450
400
350
300
250
200
150
100

50

60

50

40

30

20

10

0

5

E D 90
| Entries 2329
Mean 09573
[ RMS 0.2344
— UDFLW 0.000
L OVFLW 0.000
L ALLCHAN 2329.
Cale Ly Lo bv o by
0 1 2 3 4
Correction Factor K-
F 1D 92
— Entries 595
C Mean 1.000
L RMS 0.7631
- UDFLW 90.00
— OVFLW 17.00
C ALLCHAN 488.0
NI SRR ﬁ b g o Ih
0 1 2 3 4

p Correction Factor K+

5

Figure 3: (Top Left) Correction factor for K* missing mass using Eq. 30. (Top right)
Correction factor for K~ missing mass using Eq.30. (Bottom left) Correction factor
for K™ missing mass using Eq.9. (Bottom right) Correction factor using Eq. 31 and
the K™-p invariant mass for events with a reconstructed proton.
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Figure 4: Differences between the K™ missing mass correction factors and the cor-
rection factor as determined by kinematically complete events (Eq.31). Corrections
factors were computed using Eq.30 (Top left) Eq.5 (Top right) and Eq.9 (Bottom
left).
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Figure 5: (Top left, “IM”) Corrected distribution using Eq.9. (Top right, “MM 0.8”)
Corrected distribution using Eq. 5. (Bottom, “MM Eq”) Corrected distribution using
Eq. 30.
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Figure 6: Comparison of the reconstructed A*(1520) by various methods. The distri-
butions were created using the exact same event sample. The legends are the same
as in the previous figure.
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